
Final Report for

Cooperative Agreement

NASA Ames Research Center

NASA NCC 2-5285

Algorithms and Libraries
8/1/98 to 11/1/98

$50,000

Principal Investigator

Jack Dongarra

University of Tennessee, Knoxville

Computer Science Department

Technical Officer for the Cooperative Agreement
Subhash Saini

Numerical Aerospace Simulation Systems Branch, T27A-1

Grant Officer

Venoncia Braxton

> :/?,:;

/ P ;

C BSl

This exploratory study initiated our inquiry into algorithms and applications that

would benefit by latency tolerant approach to algorithm building, including the

construction of new algorithms where appropriate. In a multithreaded execution, when a

processor reaches a point where remote memory access is necessary, the request is sent

out on the network and a context--switch occurs to a new thread of computation. This

effectively masks a long and unpredictable latency due to remote loads, thereby

providing tolerance to remote access latency.

We began to develop standards to profile various algorithm and application

parameters, such as the degree of parallelism, granularity, precision, instruction set mix,

inter--processor communication, latency etc. These tools will continue to develop and

evolve as the Information Power Grid environment matures. To provide a richer context

for this research, the project also focused on issues of fault-tolerance and computation

migration of numerical algorithms and software.

During the initial phase we tried to increase our understanding of the bottlenecks in

single processor performance. Our work began by developing an approach for the

automatic generation and optimization of numerical software for processors with deep

memory hierarchies and pipelined functional units. The production of such software for

machines ranging from desktop workstations to embedded processors can be a tedious

and time-consuming process. The work that was done helps in automating much of this

process. We have concentrated our efforts on the widely used linear algebra kernels

called the Basic Linear Algebra Subroutines (BLAS). In particular, the work conducted

focused on general matrix multiplication, DGEMM. However much of the technology

and methodology developed here can be applied to the other Level 3 BLAS. Moreover

thegeneralstrategycanhavean impactonbasiclinearalgebraoperationsin general and

may be extended to other important kernel operations.

In our approach,which we call ATLAS (Automatically Tuned Linear Algebra

Software), we isolated the machine-specific features of the operation to several routines,

all of which deal with performing an optimized on-chip (i.e., in level 1 cache) matrix

multiply of the form C _ C + A*B. This section of code is automatically created by the

ATLAS code generator, which uses timings to determine the correct blocking and loop

unrolling factors to perform an optimized on-chip multiply. The user may directly supply

the code generator with as much detail as desired (i.e., the user may explicitly indicate the

level 1 cache size, the blocking factor(s) to try, etc.); if such details are not provided, the

generator determines appropriate settings via timings. The rest of the code does not

change across architectures, other than perhaps including preprocessor information

discovered by the code generator. The ATLAS method also handles blocking for higher

level caches (if any), and the necessary overhead required to build the complete matrix-

matrix multiply from the on-chip multiply.

Figure 1 shows double precision matrix multiply performance across multiple

architectures for matrix order 500, comparing ATLAS's DGEMM with that provided by
the vendor.

O
m

m Vendor Matrix Multiply N ATLAS Matrix Multiply]

700.0 1

600.0
500.0
400.0

30oo • • -. ..mmm.T
20o.0ram,,• m • -.• _ • • • mm_
oo.o!m,l,m,-m,m,mm,m,m,m,,mm,l,m....m,m,t0.0

Based on the results we achieved in this study, we are planning to study other

architectures of interest, including development of cost models, and developing code

generators appropriate to these architectures. Future RISC processors with vector

instructions might require loop lengths that match the optimal vector lengths, for

instance. SMPs will require load balancing while avoiding "false sharing" of cache lines

by different processors. Different ways of thread management will also have to be

considered. On clusters of SMPs load balancing where one process on each SMP is

responsible for off-SMP communication and less floating point work will be considered.

Following up on the results investigation, we are working now on extending this

work to the level 2 BLAS, as well as adding threading as part of the package. We have

initial results for these extensions. We are also planning to develop and refine algorithms

that exploit sparse BLAS. Sparse matrix-vector multiplication is a essential kernel in

most iterative algorithms for large matrix problems. Optimizing its performance requires

a number of both architecture and matrix dependent transformations. We will study how

to extend ATLAS to optimize sparse-matrix vector multiplication, where the

optimizations may depend on the sparsity structure.

The results of this initial phase of study have demonstrated the ability of our ATLAS

method to produce a highly optimized matrix multiply for a wide range of architectures

based on a code generator that probes and searches the system for an optimal set of

parameters. This avoids the tedious task of generating by hand routines optimized for a

specific architecture. We have shown that these ideas can be expanded to cover not only

the Level 3 BLAS, but Level 2 BLAS as well. In addition we have shown that there is

scope for additional operations beyond the BLAS, such as sparse matrix vector

multiplication, and FFTs.

